
How Does Software Prefetching Work on
GPU Query Processing?

Yangshen Deng, Shiwen Chen, Zhaoyang Hong, Bo Tang
Southern University of Science and Technology

AlayaDB AI

Existing GPU DBs (GPU as primary processor)

• What is the performance bottleneck?
• Bandwidth of global memory
• Achieving a higher bandwidth requires increasing the

memory-level parallelism

• How do they achieve memory-level parallelism?
• Simply rely on the implicit hardware scheduling

Does
implicit hardware scheduling

efficiently utilize
memory bandwidth?

Question 1

Performance Analysis of BTree Search

Searching a GPU BTree with implicit hardware scheduling

Results
• Bounded by memory bandwidth
• LOW bandwidth utilization

💡Implicit hardware scheduling is NOT good enough

	%
 	%	 	� 		 	

����"!����!�� �!$���� ��$!��
	�

	�

	��

	�	

	�

�
��
�#

��
��
��

�"
!�
��
�
�

��
��

 �
 �

���
���

��
��$

���
����

��
��#

���
���

��$
���

���������"!��������

An Alternative: Explicit Software Prefetching

• Manually overlap compute operations and memory requests
• Could improve memory-level parallelism and achieve higher bandwidth
• Success in CPU databases but has not been studied in GPU databases

How does software prefetching work
on GPU query processing?

Question 2

This Work

• Implements 4 existing prefetching algorithms on GPU
• Analyzes their performance with hash join probe and BTree search
• Proposes several optimizations
• Gives a list of guidelines

Prefetching Algorithms in CPU Databases

The processing of each tuple can be modeled as
a code path with dependent memory accesses and compute operations

E.g., hash join probe 0

1

compute the hash value
read the bucket
compare the key

compute
memory
compute
memory read next bucket

code stage

Prefetching Algorithms in CPU Databases

We study 4 prefetching algorithms previously proposed for CPU DB
• Group Prefetch (GP) [1]
• Software Pipeline Prefetch (SPP) [1]
• Asynchronous Memory Access Chaining (AMAC) [2]
• Interleaved Multi-Vectorizing (IMV) [3]

Group Prefetch (GP)

An example of processing 8 tuples
An iteration processes 1 code stage of 4 tuples 0

1

2

0

1

X

0

1

2

0

1

X
0

1

2

0

1

2

0

1

X

0

1

XNeeds to buffer the state of each tuple in an iteration

0

1

2

0

1

0

1

2

0

1

0

1

2

0

1

2

0

1

0

1

Software Pipelined Prefetch (SPP)

An example of processing 8 tuples
Each iteration processes all code stages

0

1

2

0

1

X

0

1

2

0

1

X

0

1

2

0

1

2

0

1

X

0

1💡Needs to buffer the state of each code stage:
Buffer size grows linearly with the length of the code path

0

1

2

0

1

0

1

2

0

1

0

1

2

0

1

2

0

1

0

1

Asynchronous Memory Access Chaining (AMAC)

An example of processing 8 tuples
An iteration processes 1 code stage of 4 tuples

0

1

2

0

1

0

1

2

0

1

0

1

2

0

1

2

0

1

0

1

0

1

2

0

1
0

1

2

0

1

0
0

1
1

2
0

1
1

2

0

Needs to buffer the state of each tuple in an iteration

Handle divergent code paths
by dynamically filling the empty
stage with a new stage

Interleaved Multi-Vectorizing (IMV)

An example of processing 8 tuples
An iteration processes 1 code stage of 2 vectors, each with 2 tuples

0

1

0

1
0

1

0

1
2 X

divergent states

0

1

2

0

1

0

1

2

0

1

0

1

2

0

1

2

0

1

0

1

Interleaved Multi-Vectorizing (IMV)

An example of processing 8 tuples
An iteration processes 1 code stage of 2 vectors, each with 2 tuples

0

1

0

1

2

0

1

2

0

1
0 0

Buffer the divergent states

X

0

1

2

0

1

0

1

2

0

1

0

1

2

0

1

2

0

1

0

1

Interleaved Multi-Vectorizing (IMV)

An example of processing 8 tuples
An iteration processes 1 code stage of 2 vectors, each with 2 tuples

0

1

0

1

2

0

1

2

0

1
0 0

Fill the divergent states

X

0

1

2

0

1

0

1

2

0

1

0

1

2

0

1

2

0

1

0

1

Interleaved Multi-Vectorizing (IMV)

0

1

0

1

2

0

1

2

0

1
0

1

0

1 0

1

0

122

An example of processing 8 tuples
An iteration processes 1 code stage of 2 vectors, each with 2 tuples

Fill the divergent states

0

1

2

0

1

0

1

2

0

1

0

1

2

0

1

2

0

1

0

1

Prefetching APIs in GPU (CUDA)

cuda::memcpy_async
• Explicitly manage the cache (shared memory)
• Explicitly synchronize the prefetch request with an FIFO

Implementation

For GP, SPP, and AMAC, just replace the prefetch APIs

For IMV, need to re-implement the vector states reorganization
• It was proposed for SIMD execution on CPU
💡We propose an efficient implementation for SIMT execution on GPU
with warp primitives and shared memory

Challenges 1: Divergence

uniform code paths divergent code paths

w/ divergence inside a code stage

w/o divergence inside a code stage

Challenges 1: Divergence

uniform code paths divergent code paths

w/ divergence inside a code stage

w/o divergence inside a code stage

Hash Join Probe
When bucket chains
have the same length

BTree search
Searches inside a
node finish with
different steps

Hash Join Probe
When bucket chains
have different lengths

Solutions for Divergence

Divergent code paths
• AMAC fills empty code stage with new stages
• IMV reorganizes the divergent vector states

Divergence inside a code stage
• Existing algorithms do not solve this divergence
💡Our optimization:

Enabling fewer threads in a warp to reduce divergence

Challenges 2: Cache Miss

Incurred by the frequent accesses to state buffer
💡 Our optimization:

Explicitly caching states in shared memory with a coalesced layout
struct state_t {
 Tuple s_tuple;
 Entry *next;
 id_t id;
};

state_t state[GROUP_SIZE];
While (...) {
read(states[i].id);
write(states[i].id);
i++;

}

struct state_t {
 Tuple s_tuple[BLOCK_SIZE];
 Entry *next[BLOCK_SIZE];
 id_t id[BLOCK_SIZE];
};

__shared__ state_t state[];
While (...) {
read(states[i].id[THREAD_ID]);
write(states[i].id[THREAD_ID]);
i++;

}

Implicitly stored in global memory

Cache miss

Explicitly stored in shared memory

No bank conflict & no cache miss

Experiments

Hardware: NVIDIA A10 GPU, 72 SMs, 128 cores per SM.
Data: 4-byte key and 4-byte value
Tasks: hash join probe & BTree search
Baseline(BL): w/o prefetching, only hardware scheduling

Uniform Code Paths

• Software prefetching achieves higher bandwidth than hardware scheduling
• AMAC and IMV incur extra overhead in handling divergence

💡GP=SPP > AMAC > IMV > Baseline

Divergent Code Paths

Hash join probe on skewed keys: bucket chains have different lengths

💡 IMV=Baseline > GP=SPP > AMAC

• Both IMV and hardware scheduling can handle the divergence
• The way that AMAC handles divergence instead exacerbated the divergence in GPU

Software Prefetching or Hardware Scheduling?

💡It is not black or white!
Combining them together may get the best performance

Each SM has 128 hardware cores (4 warp schedulers)
It benefits from hardware scheduling only when threads per block > 128

Takeaways

• Software Prefetching WORKS in GPU query processing.
• For workloads with uniform code paths, use GP.
• For workloads with divergent code paths, use IMV.
• For workloads with divergence inside a code stage, enable a proper

number of threads per warp.
• Make sure the states are cached in shared memory or registers.
• Combine software prefetching and hardware scheduling to get the best

performance.

Thank you
Code: https://github.com/DBGroup-SUSTech/GPUDB-Prefetch

https://github.com/DBGroup-SUSTech/GPUDB-Prefetch

Reference

[1] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. 2004. Improving
hash join performance through prefetching. ICDE.
[2] Onur Kocberber, Babak Falsafi, and Boris Grot. 2015. Asynchronous
memory access chaining. VLDB.
[3] Zhuhe Fang, Beilei Zheng, and Chuliang Weng. 2019. Interleaved multi-
vectorizing. VLDB.

