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Existing GPU DBs (GPU as primary processor)

• What is the performance bottleneck?
• Bandwidth of global memory
• Achieving a higher bandwidth requires increasing the 

memory-level parallelism

• How do they achieve memory-level parallelism?
• Simply rely on the implicit hardware scheduling



Does
implicit hardware scheduling 

efficiently utilize
memory bandwidth?

Question 1



Performance Analysis of BTree Search

Searching a GPU BTree with implicit hardware scheduling

Results
• Bounded by memory bandwidth
• LOW bandwidth utilization

💡Implicit hardware scheduling is NOT good enough
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An Alternative: Explicit Software Prefetching 

• Manually overlap compute operations and memory requests
• Could improve memory-level parallelism and achieve higher bandwidth
• Success in CPU databases but has not been studied in GPU databases



How does software prefetching work 
on GPU query processing?

Question 2



This Work

• Implements 4 existing prefetching algorithms on GPU
• Analyzes their performance with hash join probe and BTree search
• Proposes several optimizations
• Gives a list of guidelines



Prefetching Algorithms in CPU Databases

The processing of each tuple can be modeled as 
a code path with dependent memory accesses and compute operations

E.g., hash join probe 0

1

compute the hash value
read the bucket
compare the key

compute
memory
compute
memory read next bucket

code stage



Prefetching Algorithms in CPU Databases

We study 4 prefetching algorithms previously proposed for CPU DB
• Group Prefetch (GP) [1]
• Software Pipeline Prefetch (SPP) [1]
• Asynchronous Memory Access Chaining (AMAC) [2]
• Interleaved Multi-Vectorizing (IMV) [3]



Group Prefetch (GP)

An example of processing 8 tuples
An iteration processes 1 code stage of 4 tuples 0
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XNeeds to buffer the state of each tuple in an iteration
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Software Pipelined Prefetch (SPP)

An example of processing 8 tuples
Each iteration processes all code stages
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1💡Needs to buffer the state of each code stage: 
Buffer size grows linearly with the length of the code path
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Asynchronous Memory Access Chaining (AMAC)

An example of processing 8 tuples
An iteration processes 1 code stage of 4 tuples
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Needs to buffer the state of each tuple in an iteration

Handle divergent code paths 
by dynamically filling the empty 
stage with a new stage



Interleaved Multi-Vectorizing (IMV)

An example of processing 8 tuples
An iteration processes 1 code stage of 2 vectors, each with 2 tuples
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Interleaved Multi-Vectorizing (IMV)

An example of processing 8 tuples
An iteration processes 1 code stage of 2 vectors, each with 2 tuples
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Interleaved Multi-Vectorizing (IMV)

An example of processing 8 tuples
An iteration processes 1 code stage of 2 vectors, each with 2 tuples
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Interleaved Multi-Vectorizing (IMV)
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An example of processing 8 tuples
An iteration processes 1 code stage of 2 vectors, each with 2 tuples

Fill the divergent states
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Prefetching APIs in GPU (CUDA)

cuda::memcpy_async
• Explicitly manage the cache (shared memory)
• Explicitly synchronize the prefetch request with an FIFO



Implementation

For GP, SPP, and AMAC, just replace the prefetch APIs

For IMV, need to re-implement the vector states reorganization
• It was proposed for SIMD execution on CPU
💡We propose an efficient implementation for SIMT execution on GPU
with warp primitives and shared memory



Challenges 1: Divergence 

uniform code paths divergent code paths

w/ divergence inside a code stage

w/o divergence inside a code stage



Challenges 1: Divergence 

uniform code paths divergent code paths

w/ divergence inside a code stage

w/o divergence inside a code stage

Hash Join Probe
When bucket chains 
have the same length

BTree search
Searches inside a 
node finish with 
different steps

Hash Join Probe
When bucket chains 
have different lengths



Solutions for Divergence 

Divergent code paths
• AMAC fills empty code stage with new stages
• IMV reorganizes the divergent vector states

Divergence inside a code stage
• Existing algorithms do not solve this divergence
💡Our optimization:

Enabling  fewer threads in a warp to reduce divergence



Challenges 2: Cache Miss

Incurred by the frequent accesses to state buffer
💡 Our optimization: 

Explicitly caching states in shared memory with a coalesced layout
struct state_t {
  Tuple s_tuple;  
  Entry *next;    
  id_t id;  
};

state_t state[GROUP_SIZE];
While (...) {
read(states[i].id);
write(states[i].id);
i++;

}

struct state_t {
  Tuple s_tuple[BLOCK_SIZE];  
  Entry *next[BLOCK_SIZE];    
  id_t id[BLOCK_SIZE];  
};

__shared__ state_t state[];
While (...) {
read(states[i].id[THREAD_ID]);
write(states[i].id[THREAD_ID]);
i++;

}

Implicitly stored in global memory

Cache miss

Explicitly stored in shared memory

No bank conflict & no cache miss



Experiments

Hardware: NVIDIA A10 GPU, 72 SMs, 128 cores per SM.
Data: 4-byte key and 4-byte value
Tasks: hash join probe & BTree search
Baseline(BL): w/o prefetching, only hardware scheduling



Uniform Code Paths

• Software prefetching achieves higher bandwidth than hardware scheduling
• AMAC and IMV incur extra overhead in handling divergence

💡GP=SPP > AMAC > IMV > Baseline



Divergent Code Paths

Hash join probe on skewed keys: bucket chains have different lengths

💡 IMV=Baseline > GP=SPP > AMAC

• Both IMV and hardware scheduling can handle the divergence
• The way that AMAC handles divergence instead exacerbated the divergence in GPU



Software Prefetching or Hardware Scheduling?

💡It is not black or white!
Combining them together may get the best performance

Each SM has 128 hardware cores (4 warp schedulers)
It benefits from hardware scheduling only when threads per block > 128



Takeaways

• Software Prefetching WORKS in GPU query processing.
• For workloads with uniform code paths, use GP.
• For workloads with divergent code paths, use IMV.
• For workloads with divergence inside a code stage, enable a proper 

number of threads per warp.
• Make sure the states are cached in shared memory or registers.
• Combine software prefetching and hardware scheduling to get the best 

performance.



Thank you
Code: https://github.com/DBGroup-SUSTech/GPUDB-Prefetch

https://github.com/DBGroup-SUSTech/GPUDB-Prefetch
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