

ParaGraph: Accelerating Graph Indexing through GPU-CPU Parallel Processing for Efficient Cross-modal ANNS

Yuxiang Yang, Shiwen Chen, **Yangshen Deng**, Bo Tang Southern University of Science and Technology, AlayaDB.AI

Approximate Nearest Neighbor Search (ANNS)

- Given a query vector, search for the closest vectors.
- Used in RAG, recommendation, and LLM inference.
- An index is built on the base data for efficient search.

Cross-modal ANNS

An example for text-to-image ANNS

The limitation of existing methods

The gap between **search efficiency** and **construction time**.

RoarGraph construction

- 1. kNN graph construction (can be offline)
- 2. Top-1 projection
- 3. Iterative search-and-refine

1. kNN graph construction

2. Top-1 projection

2. Top-1 projection

2. Top-1 projection

3. Iterative search-and-refine

3. Iterative search-and-refine

The bottleneck: search-and-refine

Simply reducing #iteration will harm the search efficiency.

Construction time breakdown

Performance of different #iteration

The key: projection

- Projection is very fast.
- Projection can capture the cross-modal relation.

Can we better utilize the power of projection to accelerate cross-modal index construction?

Our core idea: top-m projection

Instead of only projecting with top-1 node, we do multiple rounds of projections using top-m nodes.

An example of top-m projection (m = 2)

ParaGraph overview

Algorithm: top-m projection + batched search-and-refine

System: CPU-GPU co-processing

New graph format for index construction

- A format that support concurrent **pruning and reversing operations** in a lock-free way.
- We can now fuse the pruning and reversing operations into one CUDA kernel.

Experiment setup

- 2 Intel(R) Xeon(R) Gold 5318Y CPUs (all threads utilized)
- 1 NVIDIA A10 GPU with 24GB memory

Dataset	Size	Dimension	Modalities
Text-to-Image-10M	10000000	200	Text → Image
LAION-1M	1000000	512	$Text \rightarrow Image$
WebVid-2.5M	2505000	512	$Text \rightarrow Video$

Search efficiency

Comparable or even better search efficiency than RoarGraph (SOTA)

Construction time

Up to 4.9x faster construction than RoarGraph

The *projection* is not only fast, but also as *powerful* as the search-and-refine!

Thank you!

research@alayadb.ai