AlayaDB: The Data Foundation for Efficient and Effective

Yangshen Deng*, Zhengxin You*, Long Xiang*, Qilong Li, Peiqi Yuan, Zhaoyang Hong, Yitao Zheng, Wanting Li, Runzhong Li, Haotian Liu, Kyriakos Mouratidis, Man Lung Yiu, Huan Li, Qiaomu Shen, Rui Mao, **Bo Tang** research@alayadb.ai

Attention in LLM

Sparse Attention

- Only consider tokens with high a_{ii} .
- Turns into a vector search problem.

Given q_i , select token j with large $q_i \cdot k_j^{\mathsf{T}}$

Existing Algorithms

- Use **Top-***k* to find critical tokens.
- **k** is usually statically determined.

However, it neglects the nature of attention.

Challenges of Long Context LLM Inference

- Large KV Cache -> High GPU memory consumption.
- Solution: Offload & Reuse
- Heavy attention computation -> High latency.
- Solution: Sparse Attention

New Disaggregation Level with Vector Database

Disaggregate both KV cache and attention from inference engine, and encapsulate them into a vector database.

Store & Reuse Context via vector storage engine.

Sparse Attention

via vector search engine.

Comparison of Different Architectures

	Latency	Quality	GPU memory	Usability
Coupled architecture	High	Good	Large	Good
KV cache disaggregation	Medium	High	Large	Medium
Retrieval-based sparse attn		Medium	Small	Bad
AlayaDB	Low	Good	Small	Good

System Design and Optimizations

Code.D

System Architecture

LLM inference engines

Simple and Compatible Interface

Use AlayaDB out-of-the-box with modifying only two lines of code.

- Replace DynamicCache in huggingface/transformers with session.
- Replace API of flash-attention with session.attention.

Dynamic Inner Product Range Query (DIPR)

A better vector search target than Top-k for sparse attention.

- Targets to select all tokens with high attention scores.
- Focuses on the values of attention scores, instead of the rankings.

$$a_{ij} > \alpha \times \max_{s \in [1,n]} (a_{is}) \longrightarrow q_i \cdot k_j^{\mathsf{T}} > \max_{s \in [1,n]} (q_i \cdot k_s^{\mathsf{T}}) - \beta$$

Query Optimizer

To choose the best index and query type.

Experiment Results

En.Sum

En.MC

En.QA

Highest generation quality with minimal GPU memory.

Check our paper for more technical details and results.

