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What are DB guys doing in LLM era?

LLM

• LLM for database

Query optimizer

Data engineering

Text2SQL
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AlayaDB

• A vector database in LLM

• KV cache management + attention computation

• Supports long context LLM inference with 
low resource, low latency, and high quality
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Long context LLM inference

• Long document analysis

• Code analysis

• Chatbot with long chatting history

• ...
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Long context LLM inference

• Is expensive. Why?

+ What is 2PL protocol? LLM

Model
Llama-3-8B

Cost
141.38GB GPU memory
2 x NVIDIA A800 (80GB)
6 minutes
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LLM inference basic

Large Language Model

What is DB ?

It
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LLM inference basic
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LLM inference basic

Embedding layer

Attention layer

Feed-forward layer

Attention layer

Feed-forward layer

x 32  ...
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Attention

What is DB ?

Attention layer

𝑜1 𝑜2 𝑜3 𝑜4
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Attention

What is DB ?
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Attention

What is DB ?

𝑘3 𝑣3

𝑞3 𝑞4

𝑘2 𝑣2

𝑞2

𝑘1 𝑣1

𝑞1

𝑘4 𝑣4

𝑜3

• Prefill, in parallel

𝑜4𝑜2𝑜1
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Attention

What is DB ?

𝑘3 𝑣3𝑘2 𝑣2𝑘1 𝑣1 𝑘4 𝑣4

• Decode, on by one
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Attention

What is DB ?

𝑘3 𝑣3𝑘2 𝑣2𝑘1 𝑣1 𝑘4 𝑣4

• Decode, on by one

It

𝑞5

𝑘5 𝑣5

𝑜5

KV Cache
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Challenge of long context LLM inference

• Large KV cache  – 141.38 GB

• Heavy attention computation  – 6 minute
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Opportunities

• Large KV cache  – Offload & Reuse

• Heavy attention computation  – Sparse Attention
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Sparse attention

DB

𝑘3 𝑣3

• A token only focuses on a specific part of context

It

𝑞5

𝑘5 𝑣5

𝑜5
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Sparse attention

DB

𝑘3 𝑣3

• A token only focuses on a specific part of context

• The focused part contributes more in 𝑜𝑖

It

𝑞5

𝑘5 𝑣5

𝑜5

𝑂𝑖 =෍

𝑗=1

𝑖

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑞𝑖 ⋅ 𝑘𝑗

⊤

𝑑𝑘
𝑣𝑗

Keep the ones with high <⋅>
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Opportunities

• Large KV cache  – Offload & Reuse

• Heavy attention computation  – Sparse Attention

Question: Are existing systems/algorithms good enough?
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Coupled architecture
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Inference engine

LLM model

Attention

Context

output

• Systems: SGLang, vLLM

• Manage & reuse KV cache in GPU

• Full attention

Latency Quality GPU memory Usability

High Good Large Good



KV cache disaggregation
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Inference engine

LLM model

Attention

Context

output

• Systems: Mooncake, LMCache

• Offload KV cache to a storage service

• Reuse KV cache by re-loading

Latency Quality GPU memory Usability

Medium High Large Medium

Context

KV cache store



Retrieval-based sparse attention
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Inference engine

LLM model

Sparse attention

Sparse context

output

• Algorithms: InfLLM, RetrievalAttention

• Offload KV cache to a CPU

• Retrieve partial KV cache for attention

Latency Quality GPU memory Usability

— Medium Small Bad

Context

KV cache store

retrieve



How to meet all these goals?
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Latency Quality GPU memory Usability

Coupled architecture High Good Large Good

KV cache disaggregation Medium High Large Medium

Retrieval-based sparse attn — Medium Small Bad

AlayaDB Low Good Small Good



AlayaDB – New abstraction 
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Inference engine

LLM model

Sparse attention

output

• Decouple both attention & KV cache

• Encapsulate into a vector database

• Retrieve partial KV cache for attention

Latency Quality GPU memory Usability

Low Good Small Good

Context

AlayaDB

retrieve



Seize the opportunities with DB techniques
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Inference engine

LLM model

Sparse attention

output

• Store & reuse context

• via vector storage engine

• Sparse attention

• via vector search engine

Context

AlayaDB

retrieve

What DB community is really good at!
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Session

DB

Session Session Session

DB

Attention engine

Query optimizer

Query type

Top-� Filter DIPR

Buffer Manager

Cached 
block

Cached 
block

Cached 
block

User 
interface

Query 
processing 

Engine

Vector 
storage 
engine

Index type

Flat Fine Coarse

Vector File System

Vector 
block

Vector 
block

Vector 
block

LLM inference engines

• Interface & API

• Vector search query DIPR

• Query optimizer

• End-to-end optimizations



Simple and compatible interface
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• Session: states of an on-going context
• Session is compatible with DynamicCache() in huggingface/transformers

• Session.attention is compatible with flash-attention
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From sparse attention to vector search

DB

𝑘3 𝑣3

• How to locate the tokens with high attention score

• A Maximum Inner Product Search (MIPS) problem

It

𝑞5

𝑘5 𝑣5

𝑜5

𝑂𝑖 =෍

𝑗=1

𝑖

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑞𝑖 ⋅ 𝑘𝑗

⊤

𝑑𝑘
𝑣𝑗

Keep the ones with high <⋅>
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Limitation of Top-K

• Existing sparse attention & vector search works focus on Top-K

• However, it does not match the goal of attention approximation
• Top-K focuses on the ranking

• We want the selected attention weight 𝑎𝑖𝑗 close to the full attention

• We want to focus on the score!

𝑂𝑖 =෍

𝑗=1

𝑖

𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑞𝑖 ⋅ 𝑘𝑗

⊤

𝑑𝑘
𝑣𝑗



# of critical token is dynamic

• Different heads need different # critical tokens



# of critical token is dynamic

• Different heads need different # critical tokens

• Different tasks need different # critical tokens



# of critical token is dynamic

• Different heads need different # critical tokens

• Different tasks need different # critical tokens

• Can we design a new vector search target? 

• meets this dynamicity

• can be searched efficiently



Dynamic Inner Product Range Query (DIPR)

• Intuition

• Use the largest attention weight as the pivot

• Drop attention weights that are too smaller than the largest one

𝑎𝑖𝑗 > 𝛼 × max
𝑠∈ 1,𝑛

(𝑎𝑖𝑠)



Dynamic Inner Product Range Query (DIPR)

• Intuition

• Use the largest attention weight as the pivot

• Drop attention weights that are too smaller than the largest one

• The formula can be transformed into a kind of range query on <⋅>

𝑎𝑖𝑗 > 𝛼 × max
𝑠∈ 1,𝑛

(𝑎𝑖𝑠)

𝑞𝑖 ⋅ 𝑘𝑗
⊤ > max

𝑠∈ 1,𝑛
𝑞𝑖 ⋅ 𝑘𝑠

⊤ − 𝛽



Dynamic Inner Product Range Query (DIPR)

• Can capture the dynamicity by giving a constant 𝛽



Dynamic Inner Product Range Query (DIPR)

• Can capture the dynamicity by giving a constant 𝛽



Challenges of DIPR search

• The maximum value is unkown

• Must not stop before the maximum value is founded

• The number of required points is unkown

• Must converge and stop after required points are founded

𝑞𝑖 ⋅ 𝑘𝑗
⊤ > max

𝑠∈ 1,𝑛
𝑞𝑖 ⋅ 𝑘𝑠

⊤ − 𝛽



Efficient DIPR search on graph index

• Set a capacity threshold 𝑙0

• Candidate list < 𝑙0: explore every nodes   ensure max is founded

• Candidate list > 𝑙0: explore only critical nodes   ensure convergence
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Unifying sparse attention algorithms

• Coarse-grained index: InfLLM, Quest, Arkvale

• Fine-grained index: RetrievalAttention, MagicPiG

• Flat index: brute-force scan

• AlayaDB provides a framework to integrate and optimize sparse 
attention algorithms



Rule-based query optimizer
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End-to-end optimizations

• Index construction acceleration

• Late materialization for index updating

• Data-centric attention engine

• Vector file system organized in graph

• Buffer manager

• … 



Experiments

• NVIDIA L20 (48GB)

• 2 x XEON GOLD 6542Y CPU (48 x 2 threads, 512GB)

• SLO: Time-Per-Output-Token (TPOT) = 240ms

Can AlayaDB achieve low latency, high quality, and low resource 
consumption for long context LLM inference?



Generation quality

• Highest quality under the SLO
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Resource consumption

• Smallest GPU memory consumption under the SLO
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Time-To-First-Token (TTFT)

• Faster context reuse than KV cache disaggregation
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Takeaways

• Using vector database for LLM inference is powerful.

• If need to disaggregate KV cache, should also disaggregate attention.

• Attention is a near-data computation (a new DB operator)
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Thanks

research@alayadb.ai
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